Assemblers

An AIX assembler language program can be divided into control sections
using the .CSECT assembler directive. Each control section has an associated
storage mapping class that describes the kind of data it contains. Some of the
most commonly used storage mapping classes are PR (executable instruc-
tions), RO (read-only data), RW (read/write data), and BS (uninitialized
read /write data). AIX control sections combine some of the features of the SIC
control sections and program blocks that we discussed in Section 2.3. One con-
trol section may consist of several different parts of the source program. These
parts are gathered together by the assembler, as with SIC program blocks. The
control sections themselves remain separate after assembly, and are handled
independently by the loader or linkage editor.

The AIX assembler language provides a special type of control section
called a dummy section. Data items included in a dummy section do not actually
become part of the object program; they serve only to define labels within the
section. Dummy sections are most commonly used to describe the layout of a
record or table that is defined externally. The labels define symbols that can be
used to address fields in the record or table (after an appropriate base register is
established). AIX also provides common blocks, which are uninitialized blocks of
storage that can be shared between independently assembled programs.

Linking of control sections can be accomplished using methods like the
ones we discussed for SIC. The assembler directive .GLOBL makes a symbol
available to the linker, and the directive .EXTERN declares that a symbol is
defined in another source module. These directives are essentially the same as
the SIC directives EXTDEF and EXTREF. Expressions that involve relocatable
and external symbols are classified and handled using rules similar to those
discussed in Sections 2.3.3 and 2.3.5.

The AIX assembler also provides a different method for linking control sec-
tions. By using assembler directives, the programmer can create a table of con-
tents (TOC) for the assembled program. The TOC contains addresses of control
sections and global symbols defined within the control sections. To refer to one
of these symbols, the program retrieves the needed address from the TOC, and
then uses that address to refer to the needed data item or procedure. (Some
types of frequently used data items can be stored directly in the TOC for effi-
ciency of retrieval.) If all references to external symbols are done in this way,
then the TOC entries are the only parts of the program involved in relocation
and linking when the program is loaded.

The AIX assembler itself has a two-pass structure similar to the one we
discussed for SIC. However, there are some significant differences. The first
pass of the AIX assembler writes a listing file that contains warnings and error
messages. If errors are found during the first pass, the assembler terminates
and does not continue to the second pass. In this case, the assembly listing
contains only errors that could be detected during Pass 1.

115

116

System Software

If no errors are detected during the first pass, the assembler proceeds to
Pass 2. The second pass reads the source program again, instead of using an
intermediate file as we discussed for SIC. This means that location counter
values must be recalculated during Pass 2. It also means that any warning
messages that were generated during Pass 1 (but were not serious enough to
terminate the assembly) are lost. The assembly listing will contain only errors
and warnings that are generated during Pass 2.

Assembled control sections are placed into the object program according to
their storage mapping class. Executable instructions, read-only data, and vari-
ous kinds of debugging tables are assigned to an object program section named
.TEXT. Read /write data and TOC entries are assigned to an object program sec-
tion named .DATA. Uninitialized data is assigned to a section named .BSS.
When the object program is generated, the assembler first writes all of the
.TEXT control sections, followed by all of the .DATA control sections except for
the TOC. The TOC is written after the other .DATA control sections. Relocation
and linking operations are specified by entries in a relocation table, surular to
the Modification records we discussed for SIC.

EXERCISES
Section 2.1

1. Apply the algorithm described in Fig. 2.4 to assemble the source pro-
gram in Fig. 2.1. Your results should be the same as those shown in
Figs. 2.2 and 2.3.

2. Apply the algorithm described in Fig. 2.4 to assemble the following
SIC source program:

SUM START 4000
FIRST LDX ZERO
LDA ZERO
LOOP ADD TABLE, X
TIX COUNT
JLT LOOP
STA TOTAL
-RSUB
TABLE RESW 2000
COUNT RESW 1
ZERO WORD 0
TOTAL RESW 1

END FIRST

Assemblers

. As mentioned in the text, a number of operations in the algorithm of
Fig. 2.4 are not explicitly spelled out. (One example would be scan-
ning the instruction operand field for the modifier “,X”.) List as
many of these implied operations as you can, and think about how
they mighi be implemented.

. Suppose that you are to write a “disassembler”—that is, a system
program that takes an ordinary object program as input and pro-
duces a listing of the source version of the program. What tables and
data structures would be required, and how would they be used?
How many passes would be needed? What problems would arise in
recreating the source program?

. Many assemblers use free-format input. Labels must start in Column 1
of the source statement, but other fields (opcode, operands, com-
ments) may begin in any column. The various fields are separated by
blanks. How could our assembler logic be modified to allow this?

. The algorithm in Fig. 2.4 provides for the detection of some assembly
errors; however, there are many more such errors that might occur.
List error conditions that might arise during the assembly of a SIC
program. When and how would each type of error be detected, and
what action should the assembler take for each?

. Suppose that the SIC assembler language is changed to include a
new form of the RESB statement, such as

RESB n'c’

which reserves n bytes of memory and initializes all of these bytes to
the character ‘c’. For example, line 105 in Fig. 2.5 could be changed to

BUFFER RESB 4096

This feature could be implemented by simply generating the
required number of bytes in Text records. However, this could lead
to a large increase in the size of the object program—for example, the
object program in Fig. 2.8 would be about 40 times its previous size.
Propose a way to implement this new form of RESB without such a
large increase in object program size.

. Suppose that you have a two-pass assembler that is written accord-
ing to the algorithm in Fig. 2.4. In the case of a duplicate symbol, this
assembler would give an error message only for the second (i.e.,
duplicate) definition. For example, it would give an error message
only for line 5 of the program that follows.

117

118

System Software

1 P3 START 1000
2 LpA ALPHA
3 STA ALPHA
4 ALPHA RESW 1

5 ALPHA WORD 0

6 END

Suppose that you want to change the assembler to give error mes-
sages for all definitions of a doubly defined symbol (e.g., lines 4 and 5),
and also for all references to a doubly defined symbol (e.g., lines 2
and 3). Describe the changes you would make to accomplish this. In
making this modification, you should change the existing assembler
as little as possible.

. Suppose that you have a two-pass assembler that is written accord-

ing to the algorithm in Fig. 2.4. You want to change this assembler so
that it gives a warning message for labels that are not referenced in
the program, as illustrated by the following example.

P3 START 1000
DA DELTA
ADD BETA

LOoP STA DELTA

Warning: label is never referenced

RSUB
ALPHA RESW 1

Warning: label is never referenced

BETA RESW 1
DELTA RESW 1
END

The warning messages should appear in the assembly listing directly
below the line that contains the unreferenced label, as shown above.
Describe the changes you would make in the assembler to add this
new diagnostic feature. In making this modification, you should
change the existing assembler as little as possible.

Section 2.2

1. Could the assembler decide for itself which instructions need to be

assembled using extended format? (This would avoid the necessity
for the programmer to code + in such instructions.)

Assemblers 119

2. As we have described it, the BASE statement simply gives information
to the assembler. The programmer must also write an instruction like
LDB to load the correct value into the base register. Could the assem-
bler automatically generate the LDB instruction from the BASE state-
ment? if o, what would be the advantages and disadvantages of
doing this?

3. Generate the object code for each statement in the following SIC/XE
program:

SUM START 0
FIRST LDX #0
LDA #0
+LDB #TABLE2
BASE TABLE2
LOOP ADD TABLE, X
ADD TABLE2, X
TIX COUNT
JLT LOOP
+STA TOTAL
RSUB
COUNT RESW 1
TABLE RESW 2000
TABLEZ2 RESW 2000
TOTAL RESW 1
END FIRST

4. Generate the complete object program for the source program given
in Exercise 3.

5. Modify the algorithm described in Fig. 2.4 to handle all of the
SIC/XE addressing modes discussed. How would these modifica-
tions be reflected in the assembler designs discussed in Chapter 8?

6. Modify the algorithm described in Fig. 2.4 to handle relocatable pro-
grams. How would these modifications be reflected in the assembler
designs discussed in Chapter 8?

7. Suppose that you are writing a disassembler for SIC/XE (see
Exercise 2.1.4). How would your disassembler deal with the various
addressing modes and instruction formats?

8. Our discussion of SIC/XE Format 4 instructions specified that the
20-bit “address” field should contain the actual target address, and
that addressing mode bits b and p should be set to 0. (That is, the
instruction should contain a direct address—it should not use base
relative or program-counter relative addressing.)

120

System Software

10.

11.

12.

However, it would be possible to use program-counter relative
addressing with Format 4. In that case, the “address” field would
actually contain a displacement, and bit p would be set to 1. For
example, the instruction on line 15 in Fig. 2.6 could be assembled as

0006 CLOOP +JSUBR RDREC 4B30102C

(using program-counter relative addressing with displacement
102C).

What would be the advantages (if any) of assembling Format 4
instructions in this way? What would be the disadvantages (if any)?
Are there any situations in which it would not be possible to assemble
a Format 4 instruction using program-counter relative addressing?

Our Modification record format is well suited for SIC/XE programs
because all address fields in instructions and data words fall neatly
into half-bytes. What sort of Modification record could we use if this
were not the case (that is, if address fields could begin anywhere

~within a byte and could be of any length)?

Suppose that we made the program in Fig. 2.1 a relocatable program.
This program is written for the standard version of SIC, so all operand
addresses are actual addresses, and there is only one instruction for-
mat. Nearly every instruction in the object program would need to
have its operand address modified at load time. This would mean a
large number of Modification records (more than doubling the size of
the object program). How could we include the required relocation
information without this large increase in object program size?

Suppose that you are writing an assembler for a machine that has
only program-counter relative addressing. (That is, there are no
direct-addressing instruction formats and no base relative address-
ing.) Suppose that you wish to assemble an instruction whose
operand is an absolute address in memory—for example,

LDA 100

to load register A from address (hexadecimal) 100 in memory. How
might such an instruction be assembled in a relocatable program?
What relocation operations would be required?

Suppose that you are writing an assembler for a machine on which the
length of an assembled instruction depends upon the type of the
operand. Consider, for example, the following three fragments of code:

Assemblers 121

a. ADD ALPHA

ALPHA IC I(3)

b. ADD ALPHA

ALPHA DC F(3.1)

C. ADD ALPHA

ALPHA DC D(3.14159)

In case (a), ALPHA is an integer operand; the ADD instruction gener-
ates 2 bytes of object code. In case (b), ALPHA is a single-precision
floating-point operand; the ADD instruction generates 3 bytes of
object code. In case (c), ALPHA is a double-precision floating-point
operand; the ADD instruction generates 4 bytes of object code.

What special problems does such a machine present for an assem-
bler? Briefly describe how you would solve these problems—that is,
how your assembler for this machine would be different from the
assembler structure described in Section 2.1.

Section 2.3
1. Write an algorithm for SIC/XE assembler.
2. Modify the algorithm described in Fig. 2.4 to handle literals.

3. In the program of Fig. 2.9, could we have used literals on lines 135
and 145? Why might we prefer not to use a literal here?

4. With a minor extension to our literal notation, we could write the
instruction on line 55 of Fig. 2.9 as
LDA =W'3’
specifying as the literal operand a word with the value 3. Would this
be a good idea?

5. Immediate operands and literals are both ways of specifying an
operand value in a source statement. What are the advantages and
disadvantages of each? When might each be preferable to the other?

122

System Software

6.

10.

Suppose that you have a two-pass SIC/XE assembler that does not
support literals. Now you want to modify the assembler to handle
literals. However, you want to place the literal pool at the beginning
of the assembled program, not at the end as is commonly done. (You
do not have to worry about LTORG statements—your assembler
should always place all literals in a pool at the beginning of the pro-
gram.) Describe how you could accomplish this. If possible, you
should do so without adding another pass to the assembler. Be sure
to describe any data structures that you may need, and explain how
they are used in the assembler.

Suppose we made the following changes to the program in Fig. 2.9:
a. Delete the LTORG statement on line 93.
b. Change the statement on line 45 to +LDA....

c. Change the oéerands on lines 135 and 145 to use literals (and
delete line 185).

Show the resulting object code for lines 45, 135, 145, 215, and 230.
Also show the literal pool with addresses and data values. Note: you
do not need to retranslate the entire program to do this..

Assume that the symbols ALPHA and BETA are labels in a source
program. What is the difference between the following two
sequences of statements? R

a. LDA ALPHA-BETA
b. LDA ALPHA
SUB BETA

What is the difference between the following sequences of state-
ments?

a. LDA #3
b. THREE EQU 3

LDA #THREE
C. THREE EQU 3

LDA THREE

Modify the algorithm described in Fig. 2.4 to handle multiple control
sections. o

11.

12.

13.

14.

15.

16.

Assemblers

Suppose all the features we described in Section 2.3 were to be
implemented in an assembler. How would the symbol table required
be different from the one discussed in Section 2.1?

Which of the features described in Section 2.3 would create addi-
tional problems in the writing of a disassembler (see Exercise 2.1.4)?
Describe these problems, and discuss possible solutions.

When different control sections are assembled together, some refer-
ences between them could be handled by the assembler (instead of
being passed on to the loader). In the program of Fig. 2.15, for exam-
ple, the expression on line 190 could be evaluated directly by the
assembler because its symbol table contains all of the required infor-
mation. What would be the advantages and disadvantages of doing
this?

In the program of Fig. 2.11, suppose we used only two program
blocks: the default block and CBLKS. Assume that the data items in
CDATA are to be included in the default block. What changes in the
source program would accomplish this? Show the object program
(corresponding to Fig. 2.13) that would result.

Suppose that for some reason it is desirable to separate the parts of
an assembler language program that require initialization (e.g.,
instructions and data items defined with WORD or BYTE) from the
parts that do not require initialization (e.g., storage reserved with
RESW or RESB). Thus, when the program is loaded for execution it
should look like

Instructions and
initialized data items

Reserved storage
(uninitialized data items)

Suppose that it is considered too restrictive to require the program-
mer to perform this separation. Instead, the assembler should take
the source program statements in whatever order they are written,
and automatically perform the rearrangement as described above.

Describe a way in which this separation of the program could be
accomplished by a two-pass assembler.

Suppose LENGTH is defined as in the program of Fig. 2.9. What would
be the difference between the following sequences of statements?

123

124 System Software

a. LDA LENGTH
SUB #1
b. LDA LENGTH-1

17. Referring to the definitions of symbols in Fig. 2.10, give the value, type,
and intuitive meaning (if any) of each of the following expressions:

a. BUFFER-FIRST
b. BUFFER+4095
¢c. MAXLEN-1

d. BUFFER+MAXLEN-1

®

BUFFER-MAXLEN

lwal

2*LENGTH

2*MAXLEN-1

= @

MAXLEN-BUFFER

-

FIRST+BUFFER

. FIRST-BUFFER+BUFEND

e

18. In the program of Fig. 2.9, what is the advantage of writing (on line
107) '

MAXLEN EQU BUFEND-BUFFER
instead of

MAXLEN EQU 4096 ?

19. In the program of Fig. 2.15, could we change line 190 to
MAXLEN EQU BUFEND-BUFFER
and line 133 to
+LDT #MAXLEN

as we did in Fig. 2.9?

20. The assembler could simply assume that any reference to a symbol
not defined within a control section is an external reference. This
change would eliminate the need for the EXTREF statement. Would
this be a good idea?

Assemblers 125

21. How could an assembler that allows external references avoid the
need for an EXTDEF statement? What would be the advantages and
disadvantages of doing this?

22. The assembler could automatically use extended format for instruc-
tions whose operands involve external references. This would elimi-
nate the need for the programmer to code + in such statements. What
would be the advantages and disadvantages of doing this?

23. On some systems, control sections can be composed of several differ-
ent parts, just as program blocks can. What problems does this pose
for the assembler? How might these problems be solved?

24. Assume that the symbols RDREC and COPY are defined as in Fig. 2.15.
According to our rules, the expression

RDREC-COPY

would be illegal (that is, the assembler and/or the loader would
reject it). Suppose that for some reason the program really needs the
value of this expression. How could such a thing be accomplished
‘without changing the rules for expressions?

25. We discussed a large number of assembler directives, and many
more could be implemented in an actual assembler. Checking for
them one at a time using comparisons might be quite inefficient.
How could we use a table, perhaps similar to OPTAB, to speed
recognition and handling of assembler directives? (Hint: the answer
to this problem may depend upon the language in which the assem-
bler itself is written.)

26. ‘Other than the listing of the source program with generated object
code, what assembler outputs might be useful to the programmer?
Suggest some optional listings that might be generated and discuss
any data structures or algorithms involved in producing them.

Section 2.4

1. The process of fixing up a few forward references should involve less
overhead than making a complete second pass of the source program.
Why don't all assemblers use the one-pass technique for efficiency?

2. Suppose we wanted our assembler to produce a cross-reference list-
ing for all symbols used in the program. For the program of Fig. 2.5,
such a listing might look like

126

System Software
Symbol Defined on line Used on lines
COPY 5
FIRST 10 255
CLOOP 15 40
ENDFIL 45 30
EOF 80 45
RETADR 95 10,70 ;
LENGTH 100 12,13,20,60,175,212

10.

11.

How might this be done by the assembler? Indicate changes to the
logic and tables discussed in Section 2.1 that would be required.

Could a one-pass assembler produce a relocatable object program
and handle external references? Describe the processing logic that
would be involved and identify any potential difficulties.

How could literals be implemented in a one-pass assembler?

We discussed one-pass assemblers as though instruction operands
could only be single symbols. How could a one-pass assembler han-
dle an instruction like

JEQ ENDFIL+3

where ENDFIL has not yet been defined?
Outline the logic flow for a simple one-pass load-and-go assembler.

Using the methods outlined in Chapter 8, develop a modular design
for a one-pass assembler that produces object code in memory.

Suppose that an instruction involving a forward reference is to be
assembled using program-counter relative addressing. How might
this be handled by a one-pass assembler?

The process of fixing up forward references in a one-pass assembler
that produces an object program is very similar to the linking process
described in Section 2.3.5. Why didn’t we just use Modification
records to fix up the forward references?

How could we extend the methods of Section 2.4.2 to handle forward
references in ORG statements?

Write an algorithm for a multipass assembler.

Assemblers 127

Section 2.5

1. Consider the description of the VAX architecture in Section 1.4.1.
What characteristics would you expect to find in a VAX assembler?

2. Consider the description of the T3E architecture in Section 1.5.3.
What characteristics would you expect to find in a T3E assembler?

Chapter 3

Loaders and Linkers

As we have seen, an object program contains translated instructions and data
values from the source program, and specifies addresses in memory where
these items are to be loaded. Our discussions in Chapter 2 introduced the fol-
lowing three processes:

1. Loading, which brings the object program into memory for execution.

2. Relocation, which modifies the object program so that it can be loaded
at an address different from the location originally specified (sce
Section 2.2.2).

3. Linking, which combines two or more separate object programs and
supplies the information needed to allow references between them
(see Section 2.3.5).

A loader is a system program that performs the loading function. Many
loaders also support relocation and linking. Some systems have a liitker (or
linkage editor) to perform the linking operations and a separate loader to han-
dle relocation and loading. In most cases all the program translators (i.e.,
assemblers and compilers) on a particular system produce object programs in
the same format. Thus one system loader or linker can be used regardless of
the original source programming language.

In this chapter we study the design and implementation of loaders and
linkers. For simplicity we often use the term loader in place of loader and/for
linker. Because the processes of assembly and loading are closely related, this
chapter is similar in structure to the preceding one. Many of the same examples
used in our study of assemblers are carried forward in this chapter. During cur
discussion of assemblers, we studied a number of features and capabilities that
are of concern to both the assembler and the loader. In the present chapter we
encounter many of the same concepts again. This time, of course, we are pri-
marily concerned with the operation of the loader; however, it is important to
remember the close connections between program translation and loading.

As in the preceding chapter, we begin by discussing the most basic soft-
ware function—in this case, loading an object program into memory for

130

System Software

execution. Section 3.1 presents the design of an absolute loader and illustrates its
operation. Such a loader might be found on a simple SIC machine that uses
the sort of assembler described in Section 2.1. ;

Section 3.2 examines the issues of relocation and linking from the loader’s
point of view. We consider some possible alternatives for object program rep-
resentation and examine how these are related to issues of machine architec-
ture. We also present the design of a linking loader, a more advarced tvpe of
loader that is typical of those found on most modern computing systems.

Section 3.3 presents a selection of commonly encountered loader features
that are not directly related to machine architecture. As before, our purpose is
not to cover all possible options, but to introduce some of the concepts and
techniques most frequently found in loaders.

Section 3.4 discusses alternative ways of accomplishing loader functions.
We consider the various times at which relocation and linking can be per-
formed, and the advantages and disadvantages associated with each. In this
context we study linkage editors (which perform linking before loading) and
dynamic linking schemes (which delay linking until execution time).

Finally, in Section 3.5 we briefly discuss some examples of actual loaders
and linkers. As before, we are primarily concerned with aspects of each piece
of software that are related to hardware or software design decisions.

3.1 BASIC LOADER FUNCTIONS

In this section we discuss the most fundamental functions of a loader—bring-
ing an object program into memory and starting its execution. You are proba-
bly already familiar with how these basic functions are performed. This
section is intended as a review to set the stage for our later discussion of more
advanced loader functions. Section 3.1.1 discusses the functions and design of
an absolute loader and gives the outline of an algorithm for such a loader.
Section 3.1.2 presents an example of a very simple absolute loader for SIC/XE,
to clarify the coding techniques that are involved.

3.1.1 Design of an Absolute Loader

We consider the design of an absolute loader that might be used with the sort
of assembler described in Section 2.1. The object program format used is the
same as that described in Section2.1.1. An example of such an object program
is shown in Fig. 3.1(a).

Because our loader does not need to perform such functions as linking and
program relocation, its operation is very simple. All functions are accom-
plished in a single pass. The Header record is checked to verify that the correct

Loaders and Linkers

HACOPY A001000A00107A

n@OIOUQGQJA103%&8203%@0103@@8103%30101%&82065@C100%po102@9C103290102D

290101%&%pclo3q&8206ngl03%&C000Q&54?6@@0000%@00000

3902032G§@4103990103@@0205@902035?82059@8l03990205%94903%@C205%§8203F

E@OZOSA]QJ0103@&C000@f%@0IOOQPQlO3g§0207%?0206%?0903%P6207%@C1036
590207;9698206@éC000gp5

E001000
(a) Object program

Memory
address Contents
0000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
0010 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
L] L] L] L] *
[] L] L] . L]
L] L] L]
OFFO0 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

1000 14103348 20390010 36281030 30101548
1010 20613C10 0300102A 0C103900 102D0Cl1O
1020 36482061 0810334C 0000454F 46000003
1030 000000xx XXXXXXXX XXXxxxxx xxxxxxxx[¢ COPY

[] L] [] L []

[] L] L] L] L]

[} L] [] L] L)
2030 XXXXXXXX xxxxxxxx xx041030 O001030EQ
2040 205p3020 3FD8205D 28103030 20575490
2050 392C205E 38203F10 10364C00 OOF10010
2060 00041030 E0207930 20645090 39DC2079
2070 2C103638 20644C00 OOOSRxxx XXXXXXXX
2080 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

L XN

(b) Program loaded in memory

Figure 3.1 Loading of an absolute program.

program has been presented for loading (and that it will fit into the available
memory). As each Text record is read, the object code it contains is moved to
the indicated address in memory. When the End record is encountered, the
loader jumps to the specified address to begin execution of the loaded pro-
gram. Figure 3.1(b) shows a representation of the program from Fig. 3.1(a)
after loading. The contents of memory locations for which there is no Text
record are shown as xxxx. This indicates that the previous contents of these
locations remain unchanged.

Figure 3.2 shows an algorithm for the absolute loader we have discussed.
Although this process is extremely simple, there is one aspect that deserves
comment. In our object program, each byte of assembled code is given using
its hexadecimal representation in character form. For example, the machine

131

132

System Softwaie

begin .
read Header record
verify program name and length
read first Text record
while record type # ‘E’ &
begin

internal representation}
move object code to specified location in memery
read next object program record
end
jump to address specified in End recocrd
end

Figure 3.2 Algorithm for an absolute icader.

operation code for an STL instruction would be represented by the pair of char-
acters “1” and “4”. When these are read by the loader (as part of the object pro-
gram), they will occupy two bytes of memory. In the instruction as loaded for
execution, however, this operation code must be stored in a single byte with
hexadecimal value 14. Thus each pair of bytes from the object program record
must be packed together into one byte during loading. It is very important to
realize that in Fig. 3.1(a), each printed character represents one byte of the
object program record. In Fig. 3.1(b), on the other hand, each printed character
represents one hexadecimal digit in memory (i.e., a half-bytel.

This method of representing an object program is inefficient in terms of
both space and execution time. Therefore, most machines store object pro-
grams in a binary form, with each byte of object code stored as a single byte in
the object program. In this type of representation, of course, a byte may con-
tain any binary value. We must be sure that our file and device conventions do
not cause some of the object program bytes to be interpreted as control charac-
ters. For example, the convention described in Section 2.1—indicating the end
of a record with a byte containing hexadecimal 00—would clearly be unsuit-
able for use with a binary object program.

Obviously object programs stored in binary form do not lend themselves
well to printing or to reading by human beings. Therefore, we continue to use
character representations of object programs in our examples in this book.

3.1.2 A Simple Bootstrap Loader

When a computer is first turned on or restarted, a special type of absolute
loader, called a bootstrap loader, is executed. This bootstrap loads the first

Loaders and Linkers

program to be run by the computer—usually an operating system. (Bootstrap
loaders are discussed in more detail in Section 3.4.3.) In this section, we
examine a very simple bootstrap loader for SIC/XE. In spite of its simplicity,
this program illustrates almost all of the logic and coding techniques that are
used in an abscluie lnader.

Figure 3.3 shows the source code for our bootstrap loader. The bootstrap
itself begins at address 0 in the memory of the machine. It loads the operating
system (or some other program) starting at address 80. Because this loader is
used in a unique situation (the initial program load for the system), the pro-
gram to be loaded can be represented in a very simple format. Each byte of
object code to be loaded is represented on device F1 as two hexadecimal digits
(just as it is in a Text record of a SIC object program). However, there is no
Header record, End record, or control information (such as addresses or
lengths). The object code from device F1 is always loaded into consecutive
bvtes of memory, starting at address 80. After all of the object code from device
F1 has been loaded, the bootstrap jumps to address 80, which begins the exe-
cution of the program that was loaded.

Much of the work of the bootstrap loader is performed by the subroutine
GETC. This subroutine reads one character from device F1 and converts it
from the ASCII character code to the value of the hexadecimal digit that is rep-
resented by that character. For example, the ASCII code for the character “0”
(hexadecimal 30) is converted to the numeric value 0. Likewise, the ASCII
codes for “1” through “9” (hexadecimal 31 through 39) are converted to the
numeric values 1 through 9, and the codes for “A” through “F” (hexadecimal
41 through 46) are converted to the values 10 through 15. This is accomplished
by subtracting 48 (hexadecimal 30) from the character codes for “0” through
“9”, and subtracting 55 (hexadecimal 37) from the codes for “A” through “F”.
The subroutine GETC jumps to address 80 when an end-of-file (hexadecimal
04) is read from device F1. It skips all other input characters that have ASCII
codes less than hexadecimal 30. This causes the bootstrap to ignore any control
bytes (such as end-of-line) that are read.

The main loop of the bootstrap keeps the address of the next memory loca-
tion to be loaded in register X. GETC is used to read and convert a pair of char-
acters from device F1 (representing 1 byte of object code to be loaded). These
two hexadecimal digit values are combined into a single byte by shifting the
first one left 4 bit positions and adding the second to it. The resulting byte is
stored at the address currently in register X, using a STCH instruction that
refers to location 0 using indexed addressing. The TIXR instruction is then used
to add 1 to the value in register X. (Because we are not interested in the result of
the comparison performed by TIXR, register X is also used as the second
operand for this instruction.)

133

134 System Software

BOOT START

0

BOOTSTRAP LOADER FOR SIC/XE

THIS BOOTSTRAP READS OBJECT CODE FROM DEVICE F1 AND ENTERS IT
INTO MEMORY STARTING AT ADDRESS 80 (HEXADECIMAL). AFTER ALL OF
THE CODE FROM DEVF1 HAS BEEN SEEN ENTERED INTO MEMORY, THE

BOOTSTRAP EXECUTES A JUMP TO ADDRESS 80 TO BEGIN EXECUTION OF

THE PROGRAM JUST LOADED.

TO BE LOADED.

CLEAR
LDX

LOOP JSUB
RMO
SHIFTL
JSUB
ADDR
STCH
TIXR
J

A
#128
GETC
A,S
S, 4
GETC
S,A
0,X
X, X
LOOP

REGISTER X CONTAINS THE NEXT ADDRESS

CLEAR REGISTER A TO ZERO
INITIALIZE REGISTER X TO HEX 80

READ HEX DIGIT FROM PROGRAM BEING LOADED
SAVE IN REGISTER S

MOVE TO HIGH-ORDER 4 BITS OF BYTE

'GET NEXT HEX DIGIT

COMBINE DIGITS TO FORM ONE BYTE

STORE AT ADDRESS IN REGISTER X

ADD 1 TO MEMORY ADDRESS BEING LOADED
LOOP UNTIL END OF INPUT IS REACHED

. SUBROUTINE TO READ ONE CHARACTER FROM INPUT DEVICE AND

. CONVERT IT FROM ASCII CODE TO HEXADECIMAL DIGIT VALUE. THE
CONVERTED DIGIT VALUE IS RETURNED IN REGISTER A. WHEN AN

. END-OF-FILE IS READ, CONTROL IS TRANSFERRED TO THE STARTING

. ADDRESS (HEX 80).

GETC D
JEQ
RD

RETURN RSUB
INPUT BYTE

INPUT

GETC

INPUT
#4

80
#48

GETC
#48
#10

RETURN
#7

X'Fl’
LOOP

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER

IF CHARACTER IS HEX 04 (END OF FILE),
JUMP TO START OF PROGRAM JUST LOADED

COMPARE TO HEX 30 (CHARACTER ‘07)

SKIP CHARACTERS LESS THAN ‘0’

SUBTRACT HEX 30 FROM ASCII CODE

IF RESULT IS LESS THAN 10, CONVERSION IS
COMPLETE. OTHERWISE, SUBTRACT 7 MORE
(FOR HEX DIGITS ’'A‘ THROUGH 'F’}

RETURN TO CALLER

CODE FOR INPUT DEVICE

Figure 3.3 Bootstrap loader for SIC/XE.

You should work through the execution of this bootstrap routine by hand
with several bytes of sample input, keeping track of the exact contents of all
registers and memory locations as you go. This will help you become familiar
with the machine-level details of how loading is performed.

Loaders and Linkers

For simplicity, the bootstrap routine in Fig. 3.3 does not do any error check-
ing it assumes that its input is correct. You are encouraged to think about the
different kinds of error conditions that might arise during the loading, and
how these could be handled.

3.2 MACHINE-DEPENDENT LOADER FEATURES

The absolute loader described in Section 3.1 is certainly simple and efficient;
however, this scheme has several potential disadvantages. One of the most
obvious is the need for the programmer to specify (when the program is
assembled) the actual address at which it will be loaded into memory. If we
are considering a very simple computer with a small memory (such as the
standard version of SIC), this does not create much difficulty. There is only
room to run one program at a time, and the starting address for this single
user program is known in advance. On a larger and more advanced machine
(such as SIC/XE), the situation is not quite as easy. We would often like to run
several independent programs together, sharing memory (and other system
resources) between them. This means that we do not know in advance where a
program will be loaded. Efficient sharing of the machine requires that we
write relocatable programs instead of absolute ones.

Writing absolute programs also makes it difficult to use subroutine
libraries efficiently. Most such libraries (for example, scientific or mathematical
packages) contain many more subroutines than will be used by any one pro-
gram. To make efficient use of memory, it is important to be able to select and
load exactly those routines that are needed. This could not be done effectively
if all of the subroutines had preassigned absolute addresses.

In this section we consider the design and implementation of a more com-
plex loader. The loader we present is one that is suitable for use on a SIC/XE
system and is typical of those that are found on most modern computers. This
loader provides for program relocation and linking, as well as for the simple
loading functions described in the preceding section. As part of our discus-
sion, we examine the effect of machine architecture on the design of the loader.

The need for program relocation is an indirect consequence of the change
to larger and more powerful computers. The way relocation is implemented in
a loader is also dependent upon machine characteristics. Section 3.2.1 dis-
cusses these dependencies by examining different implementation techniques
and the circumstances in which they might be used.

Section 3.2.2 examines program linking from the loader’s point of view.
Linking is not a machine-dependent function in the sense that relocation is;
however, the same implementation techniques are often used for these two
functions. In addition, the process of linking usually involves relocation of

135

136

Swsten Softeare

some of the routines being linked together. (See, for example, the previous
discussion concerning the use of subroutine libraries.) For these reasons we
discuss linking together with relocation in this section.

Section 3.2.3 discusses the data structures used by a typical linking (and
relocating) loader, and gives a description of the processing logic involved.
The algorithm presented here serves as a starting point for discussion of some
of the more advanced loader features in the following sections.

3.2.1 Relocation

Loaders that allow for program relocation are called relocating loaders or relative
loaders. The concept of program relocation was introduced in Section 2.2.2; you
may want to briefly review that discussion before reading further. In this
section we discuss two methods for specifying relocation as part of the object
program.

The first method we discuss is essentially the same as that introduced in
Chapter 2. A Modification record is used to describe each part of the object code
that must be changed when the program is relocated. (The format of the
Modification record is given in Section 2.3.5.) Figure 3.4 shows a SIC/XE
program we use to illustrate this first method of specifying relocation. The pro-
gram is the same as the one in Fig. 2.6; it is reproduced here for convenience.
Most of the instructions in this program use relative or immediate addressing.
The only portions of the assembled program that contain actual addresses are
the extended format instructions on lines 15, 35, and 65. Thus these are the only
items whose values are affected by relocation.

Figure 3.5 displays the object program corresponding to the source in
Fig. 3.4. Notice that there is one Modification record for each value that must
be changed during relocation (in this case, the three instructions previously
mentioned). Each Modification record specifies the starting address and length
of the field whose value is to be altered. It then describes the modification to
be performed. In this example, all modifications add the value of the symbol
COPY, which represents the starting address of the program (Fig. 3.6). More
examples of relocation specified in this manner appear in the next section
when we examine the relationship between relocation and linking,

The Modification record scheme is a convenient means for specifying pro-
gram relocation; however, it is not well suited for use with all machine archi-
tectures. Consider, for example, the program in Fig. 3.7. This is a relocatable
program written for the standard version of SIC. The important difference
between this example and the one in Fig. 3.4 is that the standard SIC machine
does not use relative addressing. In this program the addresses in all the
instructions except RSUB must be modified when the program is relocated.

255

0000
G000
0003

0006
000A
000D
001¢
0013
0017
001A
001D
0020
0023
0026
002A
002D
0030
0033
0036

105D
105F
1062
1065
1068
106B
106E
1070
1073
1076

Source statement

COPY START
FIRST STL
LDB
BASE
CLOOP +JSUB
LDA
CcoMP
JEQ
+JSUB
J
ENDFIL LDA
STA
LDA
STA
+JSUB
J
EOF BYTE
RETADR RESW
LENGTH RESW
BUFFER RESB

0
RETADR
#LENGTH
LENGTH
RDREC
LENGTH
#0
ENDFIL
WRREC
CLOOP
ECOF
BUFFER
#3
LENGTH
WRREC
@RETADR
C'EOF’
1
1
4096

Loaders and Linkers

Object code

17202D
69202D

4B101036
032026
290000
332007
4B10105D
3F2FEC
032010
0F2016
010003
0F200D
4B10105D
3E2003
454F46

SUBROUTINE TO READ RECORD INTO BUFFER

RDREC CLEAR
CLEAR
-CLEAR
+LDT
RLOOP ™D
JEQ
RD
COMPR
JEQ
STCH
TIXR
JLT
EXIT STX
_RSUB
INPUT BYTE

X
A

s
#4096
INPUT
RLOOD
INPUT
A,S
EXIT
BUFFER, X
T
RLOOP
LENGTH

X'Fl’

B410
B400
B440
75101000
E32019
332FFA
DR2013
AQ04
332008
57C003
B850
3B2FEA
134000
4F0000
Fl

SUBROUTINE TO WRITE RECORD FRCM BUFFER

WRREC CLEAR
LDT

WLOOP ™D
JEQ
LDCH
WD
TIXR
JLT
RSUB

OUTPUT BYTE
END

X
LENGTH
OUTPUT
WLOOP
BUFFER, X
OUTPUT
T

WLOOP

X' 05" .
FIRST

B410
774000
E32011
332FFA
53C003
DF2008
B850
3B2FEF
4F0000
05

Figure 3.4 Example of a SIC/XE program (from Fig. 2.6).

137

138

System Software

HCOPY ,900000,901077

TAOOOOUOAI DAl 7202DA69202DA105101036/\032026,\2 90000A332007A4810 1 OSDA3F2FECA0320 10
1;\000010/\1 3A0F20l6A010003A0F200DA4810105DA3E2003A454F46

TA001036A1 DABAJOABloOQ\BAkOA?SlOl 00(3\332019/\332?}‘*)5201 3AA004A332008A570003A5850
’[;\001053/\1 DA3B2FEAA1 36000A§F0000AF1A310 10A774000AE3201 1A332FFAA53COO3ADF2008A8850
TAOO1070A07A3BZFEFA4F0000A05

ls\000007/\05+COPY

}1,\000014A05+C0PY

MA000027A05+C0PY

EAOOOOOO

Figure 3.5 Object program with relocation by Modification records.

begin
get PROGADDR from operating system
while not end of input do
begin
read next record
while record type # 'E' do
begin
read next input record
while record type = 'T' then
begin
move object code from record to location
ADDR + specified address
end
while record type = 'M'
add PROGADDR at the location PROGADDR +
specified address

Figure 3.6 SIC/XE relocation loader algorithm.

This would require 31 Modification records, which results in an object program
more than twice as large as the one in Fig. 3.5.

On a machine that primarily uses direct addressing and has a fixed instruc-
tion format, it is often more efficient to specify relocation using a different
technique. Figure 3.8 shows this method applied to our SIC program example.
There are no Modification records. The Text records are the same as before
except that there is a relocation bit associated with each word of object code.
Since all SIC instructions occupy one word, this means that there is one reloca-
tion bit for each possible instruction. The relocation bits are gathered together
into a bit mask following the length indicator in each Text record. In Fig. 3.8

